
ModelArts

Image Management

Issue 01

Date 2024-06-11

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.
Address: Huawei Industrial Base

Bantian, Longgang
Shenzhen 518129
People's Republic of China

Website: https://www.huawei.com

Email: support@huawei.com

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. i

https://www.huawei.com
mailto:support@huawei.com

Security Declaration

Vulnerability

Huawei's regulations on product vulnerability management are subject to the Vul. Response Process. For
details about this process, visit the following web page:
https://www.huawei.com/en/psirt/vul-response-process
For vulnerability information, enterprise customers can visit the following web page:
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. ii

https://www.huawei.com/en/psirt/vul-response-process
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Contents

1 Image Management..1

2 Using Custom Images in Notebook Instances.. 4
2.1 Registering an Image in ModelArts.. 4
2.2 Saving a Notebook Instance as a Custom Image.. 5
2.2.1 Saving a Notebook Environment Image.. 5
2.2.2 Using a Custom Image to Create a Notebook Instance...7
2.3 Creating and Using a Custom Image on a Notebook Instance...7
2.3.1 Application Scenarios and Process... 7
2.3.2 Step 1 Creating a Custom Image... 8
2.3.3 Step 2 Registering a New Image.. 9
2.3.4 Step 3 Using a New Image to Create a Development Environment... 10

3 Using a Custom Image to Train Models (New-Version Training)..............................11
3.1 Overview.. 11
3.2 Preparing a Training Image... 13
3.2.1 Specifications for Custom Images for Training Jobs..13
3.2.2 Migrating an Image to ModelArts Training..14
3.2.3 Using a Base Image to Create a Training Image.. 15
3.3 Creating an Algorithm Using a Custom Image.. 15
3.4 Using a Custom Image to Create a CPU- or GPU-based Training Job... 21

4 Using a Custom Image to Create AI applications for Inference Deployment.........29
4.1 Custom Image Specifications for Creating AI Applications.. 29
4.2 Creating a Custom Image and Using It to Create an AI Application..31

5 FAQs..36
5.1 How Can I Log In to SWR and Upload Images to It?...36
5.2 How Do I Configure Environment Variables for an Image?.. 38
5.3 How Do I Use Docker to Start an Image Saved Using a Notebook Instance?..38
5.4 How Do I Configure a Conda Source in a Notebook Development Environment?....................................... 39

ModelArts
Image Management Contents

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. iii

1 Image Management

Overview
During the development and runtime of AI services, complex environment
dependencies need to be debugged for containerization. In the best practices of AI
development in ModelArts, container images are used to provide fixed runtime
environments. In this way, dependencies can be managed and the runtime
environments can be easily switched. The container resources provided by
ModelArts enable quick and efficient AI development and model experiment
iteration.

The preset images provided by ModelArts by default have the following features:

● Out-of-the-box and scenario-specific: Typical dependent environments for AI
development are preset in these images to provide optimal software, OS, and
network configurations. They have been fully tested on hardware to ensure
optimal compatibility and performance.

● Configuration customizable: Preset images are stored in the SWR repository
for you to customize and register them as your own images.

● Secure and reliable: Access policies, user permissions control, vulnerability
scanning for development software, and OS are configured based on best
practices for security hardening to ensure the security of images.

If you have special requirements on the deep learning engine and development
library, you can use ModelArts custom images to customize runtime engines.

Based on the container technology, you can customize container images and run
them on ModelArts. Custom images support CLI parameters and environment
variables in free text format, featuring high flexibility for a wide range of compute
engines.

Application Scenarios of Preset Images
ModelArts provides a group of preset images. You can use a preset image to
create a notebook instance. After installing and configuring dependencies on the
instance, create a custom image. Then, you can directly use the image in
ModelArts for training jobs without any adaptation. You can also use preset
images to submit training jobs and create AI applications.

ModelArts
Image Management 1 Image Management

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 1

We recommend the preset image version based on your development
requirements and stability of the version. If your development can be carried out
using versions preset in ModelArts, for example, MindSpore 1.X, use the preset
images. They have been fully verified and have many commonly-used installation
packages, relieving you from configuring the environment.

Application Scenarios of Custom Images
● Using custom images on notebook instances

If the preset images of notebook instances cannot meet requirements, you
can create a custom image by installing and configuring the software and
other data required by the environment in a preset image. Then, use the
custom image to create new notebook instances.

● Using a custom image to create training jobs
If you have developed a model or training script locally but the AI engine you
used is not supported by ModelArts, create a custom image and upload it to
SWR. Then, use this image to create a training job on ModelArts and use the
resources provided by ModelArts to train models.

● Using a custom image to create AI applications
If you have developed a model using an AI engine that is not supported by
ModelArts, to use this model to create AI applications, do as follows: Create a
custom image, import the image to ModelArts, and use it to create AI
applications. The AI applications created in this way can be centrally managed
and deployed as services.

Custom Image Services

When you use a custom image, the following services may be involved:

● SWR
Software Repository for Container (SWR) provides easy, secure, and reliable
management over container images throughout their lifecycle, facilitating the
deployment of containerized applications. You can upload, download, and
manage container images through the SWR console, SWR APIs, or community
CLI.
Your custom images must be uploaded to SWR. The custom images used by
ModelArts for training or creating AI applications are obtained from the SWR
service management list.

Figure 1-1 Obtaining images

● OBS
Object Storage Service (OBS) is a cloud storage service optimized for storing
massive amounts of data. It provides unlimited, secure, and highly reliable
storage capabilities at a relatively low cost.

ModelArts
Image Management 1 Image Management

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 2

ModelArts exchanges data with OBS. You can store data in OBS.
● ECS

An Elastic Cloud Server (ECS) is a basic computing unit that consists of vCPUs,
memory, OS, and Elastic Volume Service (EVS) disks. After an ECS is created,
you can use it similarly to how you would use your local PC or physical server.
You can create a custom image on premises or on an ECS.

NO TE

When you use a custom image, ModelArts may need to access dependent services, such as
SWR and OBS. The custom image can be used only after the access is authorized. It is a
good practice to use an agency for authorization. After the agency is configured, the
permissions to access dependent services are delegated to ModelArts so that ModelArts can
use the dependent services and perform operations on resources on your behalf. For details,
see Configuring Access Authorization (Global Configuration).

ModelArts
Image Management 1 Image Management

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 3

https://support.huaweicloud.com/eu/prepare-modelarts/modelarts_08_0007.html

2 Using Custom Images in Notebook
Instances

2.1 Registering an Image in ModelArts
After a custom image is created, register it on the ModelArts Image Management
page before using it in notebook.

NO TE

Only the sub-users (IAM users) of the account can register and use the SWR images if the
image type is Private.
Other users can register and use SWR images only when the image type is Public.

1. Log in to the ModelArts management console and choose Image
Management. Then, click Register.

2. Configure parameters and click Register.
– SWR Source: Select a built image as the image source. You can copy the

complete SWR address or click to select the target image for
registration.

– Architecture and Type: Configure them based on the actual framework
of the custom image.

3. View the registered image on the Image Management page.

Figure 2-1 Image list

ModelArts
Image Management 2 Using Custom Images in Notebook Instances

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 4

Creating a Notebook Instance

Click the image name. On the image details page that appears, click Create
Notebook. The page for creating a notebook instance using this image is
displayed.

Figure 2-2 Image details page

Synchronizing an Image

After the image fault is rectified, go to the image details page. Click Sync in the
Operation column to refresh the image status.

2.2 Saving a Notebook Instance as a Custom Image

2.2.1 Saving a Notebook Environment Image
To save a notebook environment image, do as follows: Create a notebook instance
using a preset image, install custom software and dependencies on the base
image, and save the running instance as a container image.

In the saved image, the installed dependencies are retained. The data stored in
home/ma-user/work for persistent storage will not be stored. When you use VS
Code for remote development, the plug-ins installed on the Server are retained.

NO TE

Images stored in a notebook instance cannot be larger than 25 GB and there cannot be
more than 125 image layers. Otherwise, the image cannot be created.

If error "The container size (xx) is greater than the threshold (25G)" is reported when an
image is saved, handle the error by referring to What Do I Do If Error "The container size
(xG) is greater than the threshold (25G)" Is Displayed When I Save an Image?

Prerequisites

The notebook instance is in Running state.

Saving an Image
1. Log in to the ModelArts management console and choose DevEnviron >

Notebook in the navigation pane on the left to switch to notebook of the
new version.

2. In the notebook instance list, select the target notebook instance and choose
Save Image from the More drop-down list in the Operation column. The
Save Image dialog box is displayed.

ModelArts
Image Management 2 Using Custom Images in Notebook Instances

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 5

https://support.huaweicloud.com/eu/trouble-modelarts/modelarts_13_0268.html
https://support.huaweicloud.com/eu/trouble-modelarts/modelarts_13_0268.html

Figure 2-3 Save Image

3. In the Save Image dialog box, configure parameters. Click OK to save the
image.

Figure 2-4 Configuring image parameters

Choose an organization from the Organization drop-down list. If no
organization is available, click Create on the right to create one.
Users in an organization can share all images in the organization.

4. The image will be saved as a snapshot, and it will take about 5 minutes.
During this period of time, do not perform any operations on the instance.

ModelArts
Image Management 2 Using Custom Images in Notebook Instances

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 6

Figure 2-5 Saving as a snapshot

NO TICE

The time required for saving an image as a snapshot will be counted in the
instance running duration. If the instance running duration expires before the
snapshot is saved, saving the image will fail.

5. After the image is saved, the instance status changes to Running. View the
image on the Image Management page.

6. Click the name of the image to view its details.

2.2.2 Using a Custom Image to Create a Notebook Instance
The images saved from a notebook instance can be viewed on the Image
Management page. You can use these images to create new notebook instances,
which inherit the software configurations of the original notebook instances.

You can use either of the following methods:

Method 1: On the Create Notebook page, click Private Image and select the
saved image.

Figure 2-6 Selecting a custom image to create a notebook instance

Method 2: On the Image Management page, click the target image to access its
details page. Then, click Create Notebook.

2.3 Creating and Using a Custom Image on a Notebook
Instance

2.3.1 Application Scenarios and Process
If preset images cannot meet your service requirements, you can create container
images based on the preset images for development and training.

Generally, you will need to reconstruct the ModelArts development environment,
for example, by installing, upgrading, or uninstalling some packages. However, the

ModelArts
Image Management 2 Using Custom Images in Notebook Instances

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 7

root permission is required when certain packages are installed or upgraded. The
running notebook instance does not have the root permission. As a result, you
need to install the software that requires the root permission in the notebook
instance, which is currently unavailable in the preset development environment.

You need to write a Dockerfile based on a preset public image to customize your
image. Then, debug the image so that it can be used in ModelArts. At last, register
the image with ModelArts so that it can be used to create development
environments to meet your service requirements.

This example shows how to use ma-cli commands in ModelArts CLI to create and
register a custom image for AI development with a base image. For details, see .
The following figure shows the whole process.

Figure 2-7 Creating an image

2.3.2 Step 1 Creating a Custom Image
This section shows you how to create an image by loading an image creation
template and writing a Dockerfile. Ensure that you have created the development
environment and opened a terminal on the Notebook page. For details about
Dockerfiles, see Dockerfile reference.

Step 1 Configure authentication information, specify a profile, and enter the account
information as prompted. For more information about authentication, see .
ma-cli configure --auth PWD -P xxx

Step 2 Run env|grep -i CURRENT_IMAGE_NAME to query the image used by the current
instance.

Step 3 Create an image.

1. Obtain the SWR address of the base image.

2. Load an image creation template.
Run the ma-cli image get-template command to query the image template.

ModelArts
Image Management 2 Using Custom Images in Notebook Instances

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 8

https://docs.docker.com/engine/reference/builder/

Run the ma-cli image add-template command to load the image template
to the specified folder. The default path is where the current command is
located. For example, load the image creation template.

3. Modify a Dockerfile.
After the image template is loaded, the Dockerfile will be automatically
loaded in .ma/. The content is as follows and you can modify it based on your
needs.

4. Build an image.
Run the ma-cli image build command to build an image with the Dockerfile.
For more information, see .
The Dockerfile is stored in and the new image is stored in notebook-test/
my_image:0.0.1 in SWR. XXX indicates the profile specified for
authentication.

----End

2.3.3 Step 2 Registering a New Image
After an image is debugged, register it with ModelArts image management so
that the image can be used in ModelArts.

Use either of the following methods to register the image with ModelArts:

● Method 1: Run the ma-cli image register command to register an image.
Then, the information of the registered image is returned, including image ID
and name, as shown in the following figure. For more information, see
Registering SWR Images with ModelArts Image Management.

Figure 2-8 Registered image

ModelArts
Image Management 2 Using Custom Images in Notebook Instances

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 9

https://support.huaweicloud.com/eu/devtool-modelarts/devtool-modelarts_0316.html

● Method 2: Register the image on the ModelArts management console.
Log in to the ModelArts management console. In the navigation pane on the
left, select Image Management. The Image Management page is displayed.

Click Register. Paste the complete SWR address, or click to select a
private image from SWR for registration, as shown in Figure 2-9.
Select the architecture and type based on the site requirements. The
architecture and type must be the same as those of the image source.

Figure 2-9 Selecting an image

2.3.4 Step 3 Using a New Image to Create a Development
Environment

Procedure
After an image is registered, it is available for development environment creation.
You can log in to the ModelArts management console, choose DevEnviron >
Notebook, and select the image during creation.

Figure 2-10 Creating a development environment

ModelArts
Image Management 2 Using Custom Images in Notebook Instances

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 10

3 Using a Custom Image to Train Models
(New-Version Training)

3.1 Overview
The subscribed algorithms and preset images can be used in most training
scenarios. In certain scenarios, ModelArts allows you to create custom images to
train models.

Customizing an image requires a deep understanding of containers. Use this
method only if the subscribed algorithms and preset images cannot meet your
requirements. Custom images can be used to train models in ModelArts only after
they are uploaded to the Software Repository for Container (SWR).

You can use custom images for training on ModelArts in either of the following
ways:

● Using a preset image with customization
If you need to modify or add some software dependencies based on the
preset image, you can customize the preset image. In this case, select a preset
image and choose Customize from the version drop-down list.

● Using a custom image
You can create an image based on the ModelArts image specifications, select
your own image and configure the code directory (optional) and boot
command to create a training job.

Using a Preset Image with Customization
The only difference between this method and creating a training job totally based
on a preset image is that you must select an image. You must create a custom
image based on a preset image. For details about how to customize a preset
image, see Using a Base Image to Create a Training Image.

ModelArts
Image Management

3 Using a Custom Image to Train Models (New-
Version Training)

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 11

Figure 3-1 Creating an algorithm using a preset image with customization

The process of this method is the same as that of creating a training job based on
a preset image. For example:

● The system automatically injects environment variables.

– PATH=${PATH}:${MA_HOME}/anaconda/bin

– LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${MA_HOME}/anaconda/lib

– PYTHONPATH=${PYTHONPATH}:${MA_JOB_DIR}

● The selected boot file will be automatically started using Python commands.
Ensure that the Python environment is correct. You can run the following
commands to check the Python version used by the training job:

– export MA_HOME=/home/ma-user; docker run --rm {image} $
{MA_HOME}/anaconda/bin/python -V

– docker run --rm {image} $(which python) -V

● The system automatically adds hyperparameters associated with the preset
image.

Using a Custom Image

Figure 3-2 Creating an algorithm using a custom image

ModelArts
Image Management

3 Using a Custom Image to Train Models (New-
Version Training)

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 12

For details about how to use custom images supported by new-version training,
see Specifications for Custom Images for Training Jobs.

3.2 Preparing a Training Image

3.2.1 Specifications for Custom Images for Training Jobs
When you use a locally developed model and training script to create a custom
image, ensure that the custom image complies with the specifications defined by
ModelArts.

NO TE

In both new-version and old-version training management, custom images can be used to
create training jobs. This document describes training management of the new version. The
old version will be discontinued soon. You are advised to use the new version.

Specifications
● The size of a custom image cannot exceed 30 GB. It is recommended that the

size be less than or equal to 15 GB. An oversized image affects the startup of
a training job.

● The uid of the default user of a custom image must be 1000.

● The GPU or Ascend driver cannot be installed in a custom image. When you
select GPU resources to run training jobs, ModelArts automatically places the
GPU driver in the /usr/local/nvidia directory in the training environment.
When you select Ascend resources to run training jobs, ModelArts
automatically places the Ascend driver in the /usr/local/Ascend/driver
directory.

● x86- or Arm-based custom images can run only with specifications
corresponding to their architecture.

– Run the following command to check the CPU architecture of a custom
image:
docker inspect {Custom image path} | grep Architecture

The following is the command output for an Arm-based custom image:
"Architecture": "arm64"

– If the name of a specification contains Arm, this specification is an Arm-
based CPU architecture.

– If the name of a specification does not contain Arm, this specification is
an x86-based CPU architecture.

● ModelArts does not support the download of open source installation
packages. Install the dependency packages required by the training job in the
custom image.

ModelArts
Image Management

3 Using a Custom Image to Train Models (New-
Version Training)

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 13

3.2.2 Migrating an Image to ModelArts Training
To migrate an image to the new-version training management, perform the
following operations:

1. Add the default user group ma-group (GID = 100) of the new-version
training management for the image.

NO TE

If the user group whose GID is 100 already exists, the error message "groupadd: GID
'100' already exists" may be displayed. You can use the command cat /etc/group |
grep 100 to check whether the user group whose GID is 100 exists.

If the user group whose GID is 100 already exists, skip this step and delete the
command RUN groupadd ma-group -g 100 from the Dockerfile.

2. Add the default user ma-user (UID = 1000) of the new-version training
management for the image.

NO TE

If the user whose UID is 1000 already exists, the error message "useradd: UID 1000 is
not unique" may be displayed. You can use the command cat /etc/passwd | grep
1000 to check whether the user whose UID is 1000 exists.

If the user whose UID is 1000 already exists, skip this step and delete the command
RUN useradd -d /home/ma-user -m -u 1000 -g 100 -s /bin/bash ma-user from the
Dockerfile.

3. Modify the permissions on files in the image to allow ma-user whose UID is
1000 to read and write the files.

You can modify an image by referring to the following Dockerfile so that the
image complies with specifications for custom images of the new-version training
management.

FROM {An existing image}

USER root

If the user group whose GID is 100 already exists, delete the groupadd command.
RUN groupadd ma-group -g 100
If the user whose UID is 1000 already exists, delete the useradd command.
RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user

Modify the permissions on image files so that user ma-user whose UID is 1000 can read and write the
files.
RUN chown -R ma-user:100 {Path to the Python software package}

Configure the preset environment variables of the container image.
Set PYTHONUNBUFFERED to 1 to prevent log loss.
ENV PYTHONUNBUFFERED=1

Configure the default user and working directory of the container image.
USER ma-user
WORKDIR /home/ma-user

After editing the Dockerfile, run the following command to build a new image:

docker build -f Dockerfile . -t {New image}

Upload the new image to SWR. For details, see How Can I Log In to SWR and
Upload Images to It?

ModelArts
Image Management

3 Using a Custom Image to Train Models (New-
Version Training)

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 14

3.2.3 Using a Base Image to Create a Training Image
ModelArts provides deep learning-powered base images such as TensorFlow,
PyTorch, and MindSpore images. In these images, the software mandatory for
running training jobs has been installed. If the software in the base images cannot
meet your service requirements, create new images based on the base images and
use the new images to create training jobs.

Procedure

Perform the following operations to create an image using a training base image:

1. Install Docker. If the docker images command is executed, Docker has been
installed. In this case, skip this step.

The following uses Linux x86_64 as an example to describe how to obtain the
Docker installation package. Run the following command to install Docker:
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh

2. Create a folder named context.
mkdir -p context

3. Obtain the pip.conf file.
[global]
index-url = https://repo.example.com/repository/pypi/simple
trusted-host = repo.example.com
timeout = 120

4. Create a new image based on a training base image provided by ModelArts.
Save the edited Dockerfile in the context folder.
FROM {Path to the training base image provided by ModelArts}

Configure pip.
RUN mkdir -p /home/ma-user/.pip/
COPY --chown=ma-user:ma-group pip.conf /home/ma-user/.pip/pip.conf

Configure the preset environment variables of the container image.
Add the Python interpreter path to the PATH environment variable.
Set PYTHONUNBUFFERED to 1 to prevent log loss.
ENV PATH=${ANACONDA_DIR}/envs/${ENV_NAME}/bin:$PATH \
 PYTHONUNBUFFERED=1

RUN /home/ma-user/anaconda/bin/pip install --no-cache-dir numpy

5. Run the following command in the directory where the Dockerfile is stored to
create a container image, for example, training:v1:
docker build . -t training:v1

6. Upload the new image to SWR. For details, see How Can I Log In to SWR
and Upload Images to It?.

7. Use the custom image to create a training job on ModelArts. For details, see
Using a Custom Image to Create a CPU- or GPU-based Training Job.

3.3 Creating an Algorithm Using a Custom Image
Your locally developed algorithms or algorithms developed using other tools can
be uploaded to ModelArts for unified management.

ModelArts
Image Management

3 Using a Custom Image to Train Models (New-
Version Training)

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 15

Entries for Creating an Algorithm
You can create an algorithm using a custom image on ModelArts in either of the
following ways:

● Entry 1: On the ModelArts console, choose Algorithm Management > My
algorithms. Then, create an algorithm and use it in training jobs or publish it
to .

● Entry 2: On the ModelArts console, choose Training Management > Training
Jobs, and click Create Training Job to create a custom algorithm and submit
a training job. For details, see Using a Custom Image to Create a CPU- or
GPU-based Training Job.

Parameters for creating an algorithm

Figure 3-3 Creating an algorithm using a custom image

Table 3-1 Parameters for creating an algorithm

Parameter Description

Boot Mode Select Custom images. This parameter is mandatory.

Image Path URL of an SWR image. This parameter is mandatory.
● Private images or shared images: Click Select on the right

to select an SWR image. Ensure that the image has been
uploaded to SWR. For details, see How Can I Log In to
SWR and Upload Images to It?.

● Public images: You can also manually enter the image path
in the format of "<Organization to which your image
belongs>/<Image name>" on SWR. Do not contain the
domain name (swr.<region>.example.com) in the path
because the system will automatically add the domain
name to the path. For example:
modelarts-job-dev-image/pytorch_1_8:train-pytorch_1.8.0-cuda_10.2-py_3.7-
euleros_2.10.1-x86_64-8.1.1

ModelArts
Image Management

3 Using a Custom Image to Train Models (New-
Version Training)

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 16

Parameter Description

Code Directory OBS path for storing the training code. This parameter is
optional.
Take OBS path obs://obs-bucket/training-test/demo-code as
an example. The content in the OBS path will be automatically
downloaded to ${MA_JOB_DIR}/demo-code in the training
container, and demo-code (customizable) is the last-level
directory of the OBS path.

Boot
Command

Command for booting an image. This parameter is mandatory.
The boot command will be automatically executed after the
code directory is downloaded.
● If the training boot script is a .py file, train.py for example,

the boot command can be python ${MA_JOB_DIR}/demo-
code/train.py.

● If the training boot script is an .sh file, main.sh for example,
the boot command can be bash ${MA_JOB_DIR}/demo-
code/main.sh.

Semicolons (;) and ampersands (&&) can be used to combine
multiple boot commands, but line breaks are not supported.
demo-code (customizable) in the boot command is the last-
level directory of the OBS path.

Configuring Pipelines

A preset image-based algorithm obtains data from an OBS bucket or dataset for
model training. The training output is stored in an OBS bucket. The input and
output parameters in your algorithm code must be parsed to enable data
exchange between ModelArts and OBS. For details about how to develop code for
training on ModelArts, see Developing a Custom Script.

When you use a preset image to create an algorithm, configure the input and
output pipelines.

● Input configurations

Table 3-2 Input configurations

Paramete
r

Description

Parameter
Name

If you use argparse in the algorithm code to parse data_url
into the data input, set the data input parameter to data_url
when creating the algorithm. Set the name based on the data
input parameter in your algorithm code.
The code path parameter must be the same as the data input
parameter parsed in your algorithm code. Otherwise, the
algorithm code cannot obtain the input data.

ModelArts
Image Management

3 Using a Custom Image to Train Models (New-
Version Training)

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 17

https://support.huaweicloud.com/eu/develop-modelarts/develop-modelarts-0008.html

Paramete
r

Description

Descriptio
n

Customizable description of the input parameter,

Obtained
from

Source of the input parameter. You can select
Hyperparameters (default) or Environment variables.

Constraint
s

Whether data is obtained from a storage path or ModelArts
dataset.
If you select the ModelArts dataset as the data source, the
following constraints are added:
● Labeling Type: For details, see Creating a Labeling Job.
● Data Format, which can be Default, CarbonData, or both.

Default indicates the manifest format.
● Data Segmentation: available only for image classification,

object detection, text classification, and sound classification
datasets.
Possible values are Segmented dataset, Dataset not
segmented, and Unlimited. For details, see Publishing a
Data Version.

Yes Allow multiple data input sources based on the algorithm

Figure 3-4 Input configurations

● Output configurations

Table 3-3 Output configurations

Parameter Description

Parameter
Name

If you use argparse in the algorithm code to parse train_url
into the data output, set the data output parameter to
train_url when creating the algorithm. Set the name based on
the data output parameter in your algorithm code.
The code path parameter must be the same as the data
output parameter parsed in your algorithm code. Otherwise,
the algorithm code cannot obtain the output path.

Descriptio
n

Customizable description of the output parameter,

ModelArts
Image Management

3 Using a Custom Image to Train Models (New-
Version Training)

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 18

https://support.huaweicloud.com/eu/datalabel-modelarts/datalabel-modelarts_0004.html
https://support.huaweicloud.com/eu/dataprepare-modelarts/dataprepare-modelarts-0028.html
https://support.huaweicloud.com/eu/dataprepare-modelarts/dataprepare-modelarts-0028.html

Parameter Description

Obtained
from

Source of the output parameter. You can select
Hyperparameters (default) or Environment variables.

Yes Allow multiple data output paths based on the algorithm

Figure 3-5 Output configurations

Defining Hyperparameters

When you use a preset image to create an algorithm, ModelArts allows you to
customize hyperparameters so you can view or modify them anytime. After the
hyperparameters are defined, they are displayed in the startup command and
transferred to your boot file as CLI parameters.

1. Import hyperparameters.

You can click Add hyperparameter to manually add hyperparameters.

Figure 3-6 Adding hyperparameters

2. Edit hyperparameters. For details, see Table 3-4.

Table 3-4 Hyperparameters

Parame
ter

Description

Name Hyperparameter name
Enter 1 to 64 characters. Only letters, digits, hyphens (-), and
underscores (_) are allowed.

Type Type of the hyperparameter, which can be String, Integer, Float,
or Boolean

Default Default value of the hyperparameter, which is used for training
jobs by default

ModelArts
Image Management

3 Using a Custom Image to Train Models (New-
Version Training)

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 19

Parame
ter

Description

Constrai
nts

Click restrain. Then, set the range of the default value or
enumerated value in the dialog box displayed.

Require
d

Whether the parameter is mandatory. The value can be Yes or
No. If you select No, you can delete the hyperparameter on the
training job creation page when using this algorithm to create a
training job. If you select Yes, the hyperparameter cannot be
deleted.

Descript
ion

Description of the hyperparameter
Only letters, digits, spaces, hyphens (-), underscores (_), commas
(,), and periods (.) are allowed.

Adding Training Constraints
You can add training constraints of the algorithm based on your needs.

● Resource Type: The options are CPU and GPU. You can select multiple
options.

● Multicard Training: Select Supported or Not supported.
● Distributed Training: Select Supported or Not supported.

Figure 3-7 Training constraints

Runtime Environment Preview

When creating an algorithm, click the arrow on
in the lower right corner of the page to know the path of the code directory, boot
file, and input and output data in the training container.

ModelArts
Image Management

3 Using a Custom Image to Train Models (New-
Version Training)

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 20

Figure 3-8 Runtime environment preview

Follow-Up Procedure

After an algorithm is created, use it to create a training job. For details, see Using
a Custom Image to Create a CPU- or GPU-based Training Job.

3.4 Using a Custom Image to Create a CPU- or GPU-
based Training Job

Model training is an iterative optimization process. Through unified training
management, you can flexibly select algorithms, data, and hyperparameters to
obtain the optimal input configuration and model. After comparing metrics
between job versions, you can determine the most satisfactory training job.

Prerequisites
● The data to be trained has been uploaded to an OBS directory.

● At least one empty folder for storing the training output has been created in
OBS.

ModelArts
Image Management

3 Using a Custom Image to Train Models (New-
Version Training)

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 21

● A custom image has been created based on ModelArts specifications. For
details about the custom image specifications, see Specifications for Custom
Images for Training Jobs.

● The custom image has been uploaded to SWR. For details, see How Can I Log
In to SWR and Upload Images to It?.

Creating a Training Job
1. Log in to the ModelArts management console. In the left navigation pane,

choose Training Management > Training Jobs.
2. Click Create Training Job and set parameters. Table 3-5 lists the parameters.

Table 3-5 Job parameters

Paramete
r

Description

Created
By

Select Custom algorithms. This parameter is mandatory.
If you have created an algorithm based on a custom image in
Algorithm Management, choose the created algorithm from
My algorithms.

Boot
Mode

Select Custom images. This parameter is mandatory.

Image
Path

URL of an SWR image. This parameter is mandatory.
● Private images or shared images: Click Select on the right

to select an SWR image. Ensure that the image has been
uploaded to SWR.

● Public images: You can also manually enter the image path
in the format of "<Organization to which your image
belongs>/<Image name>" on SWR. Do not contain the
domain name (swr.<region>.example.com) in the path
because the system will automatically add the domain
name to the path. For example:
modelarts-job-dev-image/pytorch_1_8:train-pytorch_1.8.0-cuda_10.2-py_3.7-
euleros_2.10.1-x86_64-8.1.1

Code
Directory

OBS path for storing the training code. This parameter is
optional.
Take OBS path obs://obs-bucket/training-test/demo-code as
an example. The training code in this path will be
automatically downloaded to ${MA_JOB_DIR}/demo-code in
the training container, where demo-code is the last-level
directory of the OBS path and can be customized.

ModelArts
Image Management

3 Using a Custom Image to Train Models (New-
Version Training)

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 22

Paramete
r

Description

Boot
Command

Command for booting an image. This parameter is mandatory.
The boot command will be automatically executed after the
code directory is downloaded.
● If the training startup script is a .py file, train.py for

example, the boot command can be python $
{MA_JOB_DIR}/demo-code/train.py.

● If the training startup script is a .sh file, main.sh for
example, the boot command can be bash ${MA_JOB_DIR}/
demo-code/main.sh.

In the preceding examples, demo-code is the last-level OBS
directory for storing code and can be customized.

Local
Code
Directory

You can specify the local directory of a training container.
When a training job starts, the system automatically
downloads the code directory to this directory.
The default local code directory is /home/ma-user/modelarts/
user-job-dir. This parameter is optional.

Work
Directory

Directory where the boot file in the training container is
located. When a training job starts, the system automatically
runs the cd command to change the work directory to the
specified directory.

Training
Input -
Parameter
Name

The recommended value is data_url, which must be the same
as the parameter for parsing the input data in the training
code. You can set multiple training input parameters. The
name of each training input parameter must be unique, for
example, car_data_url, dog_data_url, and cat_data_url.
For example, if you use argparse in the training code to parse
data_url into the data input, set the parameter name of the
training input to data_url.
import argparse
Create a parsing task.
parser = argparse.ArgumentParser(description="train mnist",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
Add parameters.
parser.add_argument('--train_url', type=str, help='the path model saved')
parser.add_argument('--data_url', type=str, help='the training data')
Parse the parameters.
args, unknown = parser.parse_known_args()

ModelArts
Image Management

3 Using a Custom Image to Train Models (New-
Version Training)

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 23

Paramete
r

Description

Training
Input -
Data Path

Select Dataset or Data path as the training input. If you select
Data path, set an OBS path as the training input.
When the training starts, data in the specified path will be
automatically downloaded to the training container.
Take OBS path obs://obs-bucket/training-test/data as an
example. The data will be automatically downloaded to $
{MA_MOUNT_PATH}/inputs/${data_url}_N of the training
container. The value of N is the number of training input
parameters minus 1.
For example:
● If there is only one training input parameter data_url, the

data will be automatically downloaded to $
{MA_MOUNT_PATH}/inputs/data_url_0/ of the training
container.

● If there are multiple training input parameters
car_data_url, dog_data_url, and cat_data_url, the training
data will be automatically downloaded to $
{MA_MOUNT_PATH}/inputs/car_data_url_0/, $
{MA_MOUNT_PATH}/inputs/dog_data_url_1/, and $
{MA_MOUNT_PATH}/inputs/cat_data_url_2/ of the
container, respectively.

Training
Output -
Parameter
Name

The recommended value is train_url, which must be the same
as the parameter for parsing the output data in the training
code. You can set multiple training output parameters. The
name of each training output parameter must be unique.

Training
Output -
Data Path

Select an OBS path as the training output. To minimize errors,
select an empty directory.
The training result file in the training container $
{MA_MOUNT_PATH}/outputs/${train_url}_N/ will be
automatically uploaded to obs://obs-bucket/training-test/
output. The value of N is the number of training output
parameters minus 1.
For example:
● If there is only one training output parameter train_url, the

container directory of the training output is $
{MA_MOUNT_PATH}/outputs/data_url_0/.

● If there are multiple training output parameters, for
example, car_train_url, dog_train_url, and cat_train_url,
the container directories of the training output are $
{MA_MOUNT_PATH}/outputs/car_train_url_0/, $
{MA_MOUNT_PATH}/outputs/dog_train_url_1/, and $
{MA_MOUNT_PATH}/outputs/cat_train_url_2/,
respectively.

ModelArts
Image Management

3 Using a Custom Image to Train Models (New-
Version Training)

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 24

Paramete
r

Description

Training
Output -
Obtained
from

The following uses the training output train_url as an
example.
Obtain the training output from hyperparameters by using the
following code:
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--train_url')
args, unknown = parser.parse_known_args()
train_url = args.train_url

Obtain the training output from environment variables by
using the following code:
import os
train_url = os.getenv("train_url", "")

Training
Output -
Predownlo
ad

If you set Predownload to Yes, the system automatically
downloads the files in the training output data path to the
local directory of the training container when the training job
is started.
.
Select Yes for resumable training and incremental training.

Hyperpara
meters

Used for training tuning. This parameter is optional.

Environme
nt
Variable

After the container is started, the system loads the default
environment variables and the environment variables
customized here.
Table 3-6 lists the default environment variables.

Auto
Restart

After this function is enabled, you can set the number of
restart times for a training failure. This parameter is optional.

Table 3-6 Default environment variables

Environment
Variable

Description

MA_JOB_DIR Parent directory of the code directory.

MA_MOUNT_P
ATH

Parent directory of the training input and output
directories.

VC_TASK_INDE
X

Container index, starting from 0. This parameter is
meaningless for single-node training. In multi-node
training jobs, you can use this parameter to determine the
algorithm logic of the container.

ModelArts
Image Management

3 Using a Custom Image to Train Models (New-
Version Training)

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 25

https://support.huaweicloud.com/eu/develop-modelarts/develop-modelarts-0023.html

Environment
Variable

Description

VC_WORKER_
HOSTS

Node communication domain names. Multiple node
domain names are separated by commas (,). For example:
● Single node: ${MA_VJ_NAME}-$

{MA_TASK_NAME}-0.${MA_VJ_NAME}
● Two nodes: ${MA_VJ_NAME}-${MA_TASK_NAME}-0.$

{MA_VJ_NAME},${MA_VJ_NAME}-$
{MA_TASK_NAME}-1.${MA_VJ_NAME}

MA_NUM_HOS
TS

Number of compute nodes, which is automatically
obtained from Compute Nodes.

MA_NUM_GPU
S

Number of GPUs on a node

$
{MA_VJ_NAME
}-$
{MA_TASK_NA
ME}-N.$
{MA_VJ_NAME
}

Communication domain name of a node. For example,
the communication domain name of node 0 is $
{MA_VJ_NAME}-${MA_TASK_NAME}-0.$
{MA_VJ_NAME}.
N indicates the number of compute nodes. For example, if
the number of compute nodes is 4, the environment
variables are as follows:
${MA_VJ_NAME}-${MA_TASK_NAME}-0.$
{MA_VJ_NAME}
${MA_VJ_NAME}-${MA_TASK_NAME}-1.$
{MA_VJ_NAME}
${MA_VJ_NAME}-${MA_TASK_NAME}-2.$
{MA_VJ_NAME}
${MA_VJ_NAME}-${MA_TASK_NAME}-3.$
{MA_VJ_NAME}

3. Select an instance flavor. The value range of the training parameters is
consistent with the constraints of existing custom images.

Table 3-7 Resource parameters

Parameter Description

Resource Pool Select a resource pool for the job. Public and dedicated
resource pools are available for you to select.
If you select a dedicated resource pool, you can view
details about the pool. If the number of available cards of
this pool is insufficient, jobs may need to be queued. In
this case, use another resource pool or reduce the number
of cards required.

Resource Type Select CPU or GPU as needed. Set this parameter based
on the resource type specified in your training code.

ModelArts
Image Management

3 Using a Custom Image to Train Models (New-
Version Training)

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 26

Parameter Description

Instance Flavor Select a resource flavor based on the resource type. If the
type of resources to be used has been specified in your
training code, only the options that comply with the
constraints of the selected algorithm are available for you
to choose. For example, if GPU is selected in the training
code but you select CPU here, the training may fail.
During training, ModelArts will mount NVME SSDs to
the /cache directory. You can use this directory to store
temporary files. The data disk size varies depending on
the resource type. To prevent insufficient memory during
training, click Check Input Size and check the disk size of
selected instance flavor.

Compute
Nodes

Set the number of compute nodes. The default value is 1.

Job Priority When using a new-version dedicated resource pool, you
can set the priority of a training job. The value ranges
from 1 to 3. The default priority is 1, and the highest
priority is 3.
You can change the priority of a pending job.

SFS Turbo When using a dedicated resource pool, the training job
can be mounted with multiple cloud storage disks (NAS).
A disk can be mounted only once and to only one
mounting path. Each mounting path must be unique. A
maximum of 8 disks can be mounted to a training job.

Persistent Log
Saving

If you select CPU or GPU flavors, Persistent Log Saving is
available for you to set.
This function is disabled by default. ModelArts
automatically stores the logs for 30 days. You can
download all logs on the job details page.
After enabling this function, you can store training logs in
a specified OBS directory. Set Job Log Path and select an
empty OBS directory to store the log files generated
during training and ensure you have the reading and
writing permissions of the directory.

Job Log Path If you select Ascend resources, select an empty OBS path
for storing training logs. Ensure that you have read and
write permissions to the selected OBS directory.

ModelArts
Image Management

3 Using a Custom Image to Train Models (New-
Version Training)

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 27

Parameter Description

Event
Notification

Whether to subscribe to event notifications. After this
function is enabled, you will be notified of specific events,
such as job status changes or suspected suspensions, via
an SMS or email.
If you enable this function, set the following parameters:
● Topic: topic of event notifications. You can create a

topic on the SMN console.
● Event: type of events you want to subscribe to.

Options: JobStarted, JobCompleted, JobFailed,
JobTerminated, and JobHanged.

NOTE
● After you create a topic on the SMN console, add a

subscription to the topic, and confirm the subscription. Then,
you will be notified of events.

● Currently, only training jobs using GPUs support JobHanged
events.

Auto Stop ● After this parameter is enabled and the auto stop time
is set, a training job automatically stops at the
specified time.

● If this function is disabled, a training job will continue
to run.

● The options are 1hour, 2hours, 4hours, 6hours, and
Customization (1 hour to 72 hours).

4. Click Submit to create the training job.
It takes a period of time to create a training job.
To view the real-time status of a training job, go to the training job list and
click the name of the training job. On the training job details page that is
displayed, view the basic information of the training job. For details, see
Viewing Training Job Details.

ModelArts
Image Management

3 Using a Custom Image to Train Models (New-
Version Training)

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 28

https://support.huaweicloud.com/eu/develop-modelarts/develop-modelarts-0013.html

4 Using a Custom Image to Create AI
applications for Inference Deployment

4.1 Custom Image Specifications for Creating AI
Applications

When building a custom image using a locally developed model, ensure that the
image complies with ModelArts specifications.

● No malicious code is allowed.
● The size of a custom image cannot exceed 30 GB.
● External APIs

Set the external service API for a custom image. The inference API must be
the same as the URL defined by apis in config.json. Then, the external service
API can be directly accessed when the image is started. The following is an
example of accessing an MNIST image. The image contains a model trained
using an MNIST dataset and can identify handwritten digits. listen_ip
indicates the container IP address. You can start a custom image to obtain the
container IP address from the container.
– Sample request

curl -X POST \ http://{Listening IP address}:8080/ \ -F images=@seven.jpg

Figure 4-1 Example of obtaining listen_ip

– Sample response
{"mnist_result": 7}

● (Optional) Health check API

ModelArts
Image Management

4 Using a Custom Image to Create AI applications
for Inference Deployment

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 29

If services must not be interrupted during a rolling upgrade, the health check
API must be configured in config.json for ModelArts. The health check API
returns the healthy state for a service when the service is running properly or
an error when the service becomes faulty.

NO TICE

The health check API must be configured for a hitless rolling upgrade.

The following shows a sample health check API:
– URI

GET /health

– Sample request: curl -X GET \ http://{Listening IP address}:8080/health
– Sample response

{"health": "true"}

– Status code

Table 4-1 Status code

Status Code Message Description

200 OK Request sent

● Log file output

Configure standard output so that logs can be properly displayed.
● Image boot file

To deploy a batch service, set the boot file of an image to /home/run.sh and
use CMD to set the default boot path. The following is a sample Dockerfile:
CMD ["sh", "/home/run.sh"]

● Image dependencies
To deploy a batch service, install dependency packages such as Python, JRE/
JDK, and ZIP in the image.

● (Optional) Hitless rolling upgrade
To ensure that services are not interrupted during a rolling upgrade, set HTTP
keep-alive to 200. For example, Gunicorn does not support keep-alive by
default. To ensure a hitless rolling upgrade, install Gevent and configure --
keep-alive 200 -k gevent in the image. The parameter settings vary
depending on the service framework. Set the parameters as required.

● (Optional) Gracefully exiting a container
To ensure that services are not interrupted during a rolling upgrade, the
system must capture SIGTERM signals in the container and wait for 60s
before gracefully exiting the container. If the duration is less than 60s before
the graceful exiting, services may be interrupted during the rolling upgrade.
To ensure uninterrupted service running, the system exits the container after
the system receives SIGTERM signals and processes all received requests. The
whole duration is not longer than 90s. The following shows example run.sh:
#!/bin/bash
gunicorn_pid=""

ModelArts
Image Management

4 Using a Custom Image to Create AI applications
for Inference Deployment

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 30

handle_sigterm() {
 echo "Received SIGTERM, send SIGTERM to $gunicorn_pid"
 if [$gunicorn_pid != ""]; then
 sleep 60
 kill -15 $gunicorn_pid # Transfer SIGTERM signals to the Gunicorn process.
 wait $gunicorn_pid # Wait until the Gunicorn process stops.
 fi
}

trap handle_sigterm TERM

4.2 Creating a Custom Image and Using It to Create an
AI Application

If you want to use an AI engine that is not supported by ModelArts, create a
custom image for the engine, import the image to ModelArts, and use the image
to create AI applications. This section describes how to use a custom image to
create an AI application and deploy the application as a real-time service.

The process is as follows:

1. Building an Image Locally: Create a custom image package locally. For
details, see Custom Image Specifications for Creating AI Applications.

2. Verifying the Image Locally and Uploading It to SWR: Verify the APIs of the
custom image and upload the custom image to SWR.

3. Using the Custom Image to Create an AI Application: Import the image to
ModelArts AI application management.

4. Deploying the AI Application as a Real-Time Service: Deploy the model as
a real-time service.

Building an Image Locally
This section uses a Linux x86_x64 host as an example. You can purchase an ECS of
the same specifications or use an existing local host to create a custom image.

1. After logging in to the host, install Docker. For details, see Docker official
documents. Alternatively, run the following commands to install Docker:
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh

2. Obtain the base image. Ubuntu 18.04 is used in this example.
docker pull ubuntu:18.04

3. Create the self-define-images folder, and edit Dockerfile and test_app.py in
the folder for the custom image. In the sample code, the application code
runs on the Flask framework.
The file structure is as follows:
self-define-images/
 --Dockerfile
 --test_app.py

– Dockerfile
From ubuntu:18.04
Configure the source and install Python, Python3-PIP, and Flask.
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 sed -i "s@http://.*security.ubuntu.com@http://repo.example.com@g" /etc/apt/sources.list && \
 sed -i "s@http://.*archive.ubuntu.com@http://repo.example.com@g" /etc/apt/sources.list && \
 apt-get update && \

ModelArts
Image Management

4 Using a Custom Image to Create AI applications
for Inference Deployment

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 31

https://support.huaweicloud.com/eu/docker-modelarts/modelarts_23_0219.html
https://docs.docker.com/engine/install/binaries/#install-static-binaries
https://docs.docker.com/engine/install/binaries/#install-static-binaries

 apt-get install -y python3 python3-pip && \
 pip3 install --trusted-host https://repo.example.com -i https://repo.example.com/repository/
pypi/simple Flask

Copy the application code to the image.
COPY test_app.py /opt/test_app.py

Specify the boot command of the image.
CMD python3 /opt/test_app.py

– test_app.py
from flask import Flask, request
import json
app = Flask(__name__)

@app.route('/greet', methods=['POST'])
def say_hello_func():
 print("----------- in hello func ----------")
 data = json.loads(request.get_data(as_text=True))
 print(data)
 username = data['name']
 rsp_msg = 'Hello, {}!'.format(username)
 return json.dumps({"response":rsp_msg}, indent=4)

@app.route('/goodbye', methods=['GET'])
def say_goodbye_func():
 print("----------- in goodbye func ----------")
 return '\nGoodbye!\n'

@app.route('/', methods=['POST'])
def default_func():
 print("----------- in default func ----------")
 data = json.loads(request.get_data(as_text=True))
 return '\n called default func !\n {} \n'.format(str(data))

host must be "0.0.0.0", port must be 8080
if __name__ == '__main__':
 app.run(host="0.0.0.0", port=8080)

4. Switch to the self-define-images folder and run the following command to
create custom image test:v1:
docker build -t test:v1 .

5. Run docker images to view the custom image you have created.

Verifying the Image Locally and Uploading It to SWR
1. Run the following command in the local environment to start the custom

image:
docker run -it -p 8080:8080 test:v1

Figure 4-2 Starting a custom image

2. Open another terminal and run the following commands to test the functions
of the three APIs of the custom image:
curl -X POST -H "Content-Type: application/json" --data '{"name":"Tom"}' 127.0.0.1:8080/
curl -X POST -H "Content-Type: application/json" --data '{"name":"Tom"}' 127.0.0.1:8080/greet
curl -X GET 127.0.0.1:8080/goodbye

ModelArts
Image Management

4 Using a Custom Image to Create AI applications
for Inference Deployment

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 32

If information similar to the following is displayed, the function verification is
successful.

Figure 4-3 Testing API functions

3. Upload the custom image to SWR. For details, see How Can I Log In to SWR
and Upload Images to It?

4. View the uploaded image on the My Images > Private Images page of the
SWR console.

Figure 4-4 Uploaded images

Using the Custom Image to Create an AI Application
Import a meta model. For details, see Creating and Importing a Model Image.
Key parameters are as follows:
● Meta Model Source: Select Container image.

– Container Image Path: Select the created private image.

Figure 4-5 Created private image

– Container API: Protocol and port number for starting a model. Ensure
that the protocol and port number are the same as those provided in the
custom image.

– Image Replication: indicates whether to copy the model image in the
container image to ModelArts. This parameter is optional.

– Health Check: checks health status of a model. This parameter is
optional. This parameter is configurable only when the health check API
is configured in the custom image. Otherwise, creating the AI application
will fail.

● APIs: APIs of a custom image. This parameter is optional. The model APIs
must comply with ModelArts specifications. For details, see Specifications for
Editing a Model Configuration File.

ModelArts
Image Management

4 Using a Custom Image to Create AI applications
for Inference Deployment

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 33

https://support.huaweicloud.com/eu/docker-modelarts/docker-modelarts_0018.html
https://support.huaweicloud.com/eu/docker-modelarts/docker-modelarts_0018.html
https://support.huaweicloud.com/eu/inference-modelarts/inference-modelarts-0009.html
https://support.huaweicloud.com/eu/inference-modelarts/inference-modelarts-0056.html
https://support.huaweicloud.com/eu/inference-modelarts/inference-modelarts-0056.html

The configuration file is as follows:
[{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "application/json"
 },
 "response": {
 "Content-type": "application/json"
 }
 },
{
 "url": "/greet",
 "method": "post",
 "request": {
 "Content-type": "application/json"
 },
 "response": {
 "Content-type": "application/json"
 }
 },
{
 "url": "/goodbye",
 "method": "get",
 "request": {
 "Content-type": "application/json"
 },
 "response": {
 "Content-type": "application/json"
 }
 }
]

Deploying the AI Application as a Real-Time Service
1. Deploy the AI application as a real-time service. For details, see Deploying as

a Real-Time Service.
2. View the details about the real-time service.

Figure 4-6 Usage Guides

3. Access the real-time service on the Prediction tab page.

ModelArts
Image Management

4 Using a Custom Image to Create AI applications
for Inference Deployment

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 34

https://support.huaweicloud.com/eu/inference-modelarts/inference-modelarts-0018.html
https://support.huaweicloud.com/eu/inference-modelarts/inference-modelarts-0018.html

Figure 4-7 Accessing a real-time service

ModelArts
Image Management

4 Using a Custom Image to Create AI applications
for Inference Deployment

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 35

5 FAQs

5.1 How Can I Log In to SWR and Upload Images to It?
This section describes how to log in to SWR and upload images to it.

Step 1 Log In to SWR
1. Log in to the SWR console and select the target region.

Figure 5-1 SWR console

2. Click Create Organization in the upper right corner and enter an
organization name to create an organization. deep-learning is used as an
example. Replace it in subsequent commands with the actual organization
name.

ModelArts
Image Management 5 FAQs

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 36

Figure 5-2 Creating an organization

3. Click Generate Login Command in the upper right corner to obtain a login
command.

Figure 5-3 Login Command

4. Log in to the ECS as user root and enter the login command.

Figure 5-4 Login command executed on the ECS

Step 2 Upload Images to SWR

This section describes how to upload an image to SWR.

1. Log in to SWR and tag the image to be uploaded. Replace the organization
name deep-learning in the following command with the actual organization
name obtained in step 1.
sudo docker tag tf-1.13.2:latest swr.example.com/deep-learning/tf-1.13.2:latest

2. Run the following command to upload the image:
sudo docker push swr.example.com/deep-learning/tf-1.13.2:latest

ModelArts
Image Management 5 FAQs

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 37

Figure 5-5 Uploading an image

3. After the image is uploaded, choose My Images in navigation pane on the
left of the SWR console to view the uploaded custom images.

Figure 5-6 Uploaded custom image

swr.example.com/deep-learning/tf-1.13.2:latest is the SWR URL of the
custom image.

5.2 How Do I Configure Environment Variables for an
Image?

In a Dockerfile, use the ENV instruction to configure environment variables. For
details, see Dockerfile reference.

5.3 How Do I Use Docker to Start an Image Saved
Using a Notebook Instance?

An image saved using a notebook instance contains the Entrypoint parameter, as
shown in Entrypoint. The executable file or command specified in the Entrypoint
parameter overwrites the default boot command of the image. The command
input in the Entrypoint parameter is not preset in the image. When you run
docker run in the local environment to start the image, an error message is
displayed, indicating that the container creation task fails because the boot file or
directory is not found, as shown in Figure 5-8.

To avoid this error, configure the --entrypoint parameter to overwrite the
program specified in Entrypoint. Use the boot file or command specified by the --
entrypoint parameter to start the image. Example:

ModelArts
Image Management 5 FAQs

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 38

https://docs.docker.com/engine/reference/builder/#env

docker run -it -d --entrypoint /bin/bash image:tag

Figure 5-7 Entrypoint

Figure 5-8 Error reported when an image is being started

5.4 How Do I Configure a Conda Source in a Notebook
Development Environment?

You can install the development dependencies in Notebook as you need. Package
management tools pip and Conda can be used to install regular dependencies.
The pip source has been configured and can be used for installation, while the
Conda source requires further configuration.

This section describes how to configure the Conda source on a notebook instance.

Configuring the Conda Source

The Conda software has been preset in images.

Common Conda Commands

For details about all Conda commands, see Conda official documents. The
following table lists only common commands.

Table 5-1 Common Conda commands

Descripti
on

Command

Obtain
online
help.

conda --help
conda update --help # Obtain help for a command, for example, update.

ModelArts
Image Management 5 FAQs

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 39

https://conda.io/projects/conda/en/latest/commands.html

Descripti
on

Command

View the
Conda
version.

conda -V

Update
Conda.

conda update conda # Update Conda.
conda update anaconda # Update Anaconda.

Manage
environm
ents.

conda env list # Show all virtual environments.
conda info -e # Show all virtual environments.
conda create -n myenv python=3.7 # Create an environment named myenv with Python
version 3.7.
conda activate myenv # Activate the myenv environment.
conda deactivate # Disable the current environment.
conda remove -n myenv --all # Delete the myenv environment.
conda create -n newname --clone oldname # Clone the old environment to the new
environment.

Manage
packages.

conda list # Check the packages that have been installed in the current environment.
conda list -n myenv # Specify the packages installed in the myenv environment.
conda search numpy # Obtain all information of the numpy package.
conda search numpy=1.12.0 --info # View the information of NumPy 1.12.0.
conda install numpy pandas # Concurrently install the NumPy and Pandas packages.
conda install numpy=1.12.0 # Install NumPy of a specified version.
The install, update, and remove commands use -n to specify an environment, and
the install and update commands use -c to specify a source address.
conda install -n myenv numpy # Install the numpy package in the myenv environment.
conda install -c https://conda.anaconda.org/anaconda numpy # Install NumPy using
https://conda.anaconda.org/anaconda.
conda update numpy pandas # Concurrently update the NumPy and Pandas packages.
conda remove numpy pandas # Concurrently uninstall the NumPy and Pandas
packages.
conda update –-all # Update all packages in the current environment.

Clear
Conda.

conda clean -p # Delete useless packages.
conda clean -t # Delete compressed packages.
conda clean -y --all # Delete all installation packages and clear caches.

Saving as an Image
After installing the external libraries, save the environment using the image saving
function provided by ModelArts notebook of the new version. You can save a
running notebook instance as a custom image with one click for future use. After
the dependency packages are installed on a notebook instance, it is a good
practice to save the instance as an image to prevent the dependency packages
from being lost. For details, see Saving a Notebook Environment Image.

ModelArts
Image Management 5 FAQs

Issue 01 (2024-06-11) Copyright © Huawei Technologies Co., Ltd. 40

	Contents
	1 Image Management
	2 Using Custom Images in Notebook Instances
	2.1 Registering an Image in ModelArts
	2.2 Saving a Notebook Instance as a Custom Image
	2.2.1 Saving a Notebook Environment Image
	2.2.2 Using a Custom Image to Create a Notebook Instance

	2.3 Creating and Using a Custom Image on a Notebook Instance
	2.3.1 Application Scenarios and Process
	2.3.2 Step 1 Creating a Custom Image
	2.3.3 Step 2 Registering a New Image
	2.3.4 Step 3 Using a New Image to Create a Development Environment

	3 Using a Custom Image to Train Models (New-Version Training)
	3.1 Overview
	3.2 Preparing a Training Image
	3.2.1 Specifications for Custom Images for Training Jobs
	3.2.2 Migrating an Image to ModelArts Training
	3.2.3 Using a Base Image to Create a Training Image

	3.3 Creating an Algorithm Using a Custom Image
	3.4 Using a Custom Image to Create a CPU- or GPU-based Training Job

	4 Using a Custom Image to Create AI applications for Inference Deployment
	4.1 Custom Image Specifications for Creating AI Applications
	4.2 Creating a Custom Image and Using It to Create an AI Application

	5 FAQs
	5.1 How Can I Log In to SWR and Upload Images to It?
	5.2 How Do I Configure Environment Variables for an Image?
	5.3 How Do I Use Docker to Start an Image Saved Using a Notebook Instance?
	5.4 How Do I Configure a Conda Source in a Notebook Development Environment?

